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Abstract--Classical linear stability theory is extended to include the effects of temperature dependent 
viscosity and density. From an asymptotic point of view, i.e. after a Taylor series expansion of all properties 
with respect to temperature and pressure, they turn out to be the leading order variable property effects 
for forced cenvection at low speeds. In an asymptotic approach assuming small heat transfer rates, the two 
property effects acting on the basic flow and its perturbations are well separated from each other. The 
asymptotic solutions hold for all Newtonian fluids. Examples are given for air and water. The numerical 

results are in good agreement with experimental data from the heat transfer literature. 

1. INTRODUCTION 

In an effort to better understand the nature and origin 
of turbulence, numerous theoretical and experimental 
investigations of the stability of laminar boundary 
layer flows have been made: see Stuart [1], Bayly et 
al. [2], Herbert [3], Huerre and Monkewitz [4] for a 
review. 

But, among all these studies only a few have taken 
into account the effects of variable properties, even 
though non-constant properties can have a strong 
effect on the critical Reynolds number. For a heated 
flat plate boundary layer in water, for example, Waz- 
zan et al. [5] found that the critical Reynolds number 
varies between 520 and nearly 16 000 (based on the 
displacement thickness). Thus there is a considerable 
potential for transition control with technical appli- 
cations in various fields : see, for example, Morkovin 
and Reshotko [6] for an overview on transition con- 
trol for drag reduction. 

Since the transition process can be controlled only 
in its first stage of development, a theoretical approach 
based on the lineal: stability analysis is sufficient and 
adequate. The aim of the present study is to provide 
results as general as possible, i.e, not restricted to 
specific fluids or distinct heat transfer rates. The 
method is that of an asymptotic approach for small 
heat transfer rates which provides results that hold for 
all Newtonian fluid s. The general theory is outlined in 
Herwig and Sch~ifer [7] : in what follows it is applied to 
forced convection boundary layer flows at low speeds. 

Temperature dependence of viscosity #* and den- 
sity p* turn out to be the most important (first order) 
property effects that have to be taken into account, 

when small heat transfer rates are assumed. This fol- 
lows from a Taylor series expansion of all properties 
with respect to temperature. With a* representing one 
of the physical properties p*, #*, k* and c*, the Taylor 
series expansion reads (dimensional quantities are 
starred) 

a *  
a=a-~R= l+eKav®+O(e 2) f o r e ~ 0  (1) 

with 

= r*] 
- T*  ' L~T * 7 ." (2) 

Here e is introduced as a small (perturbation) 
parameter. The leading order variable property effects 
are represented by terms eK, T®. Since only p* and/~* 
appear in the momentum equation, only eKvT- and 
eK~T-effects must be considered, leaving eKkT and eKcT 
as higher order effects. 

Similar considerations for the pressure dependence 
of the properties yield that its influence is negligible in 
the limit Ma ~ 0 (flows at low speed) : for details see 
Herwig and Sch~ifer [7]. 

2. BASIC EQUATIONS 

For constant properties, the fundamental differ- 
ential equation of the linear stability theory is the 
Orr-Sommerfeld equation (OS equation): see, for 
example, Schlichting [8]. From this equation the 
amplitude functions as well as two real eigenvalues of 
the (small) perturbations can be determined. Pertur- 
bations are assumed two-dimensional since they are 
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NOMENCLATURE 

ApT ,ArT auxiliary functions, equation (45) e 
c, amplification rate 
cr phase velocity ® 
Cp specific heat at constant pressure 
f flat plate stream function /z 
k thermal conductivity /2 
K~T nondimensional viscosity gradient, p 

equation (13) /~ 
Kpv nondimensional density gradient, q~ 

equation (13) 
M a  Mach number 
p pressure 
Pr Prandtl number, equation (8) 
qw wall heat flux 
Re  Reynolds number, equation (8) 
T temperature 
u streamwise velocity 

amplitude function of the streamwise 
velocity 

UR reference velocity 
v velocity normal to the wall 

amplitude function of the velocity 
normal to the wall 

x, y Cartesian coordinates. 

Greek symbols 
wavelength parameter, equation (3) 

perturbation parameter, equations (2), 
(14) 
nondimensional temperature 
(T*  -- T * ) / A T *  

viscosity 
amplitude function of the viscosity 
density 
amplitude function of the density 
stream function. 

Superscripts 
* dimensional quantity 

mean value 
' fluctuating quantity 
• derivative with respect to y 

complex quantity. 

Subscripts 
c critical 
i imaginary part 
L at x* = L* 
r real part 
R reference condition 
w wall 
0 zero order 
lp, 1/~ first order. 

more 'dangerous' (earlier instability) than three- 
dimensional ones: for details see the fundamental 
study of Squire [9] and its extension to variable 
property flows by Yih [10]. 

For the present study an extended version of the 
OS equation is needed which holds for temperature 
dependent density and viscosity. Due to the tem- 
perature dependence of p* and p* this modified OS 
equation must be supplemented by the thermal energy 
equation for the disturbance. 

With the common assumptions (e.g. Schlichting [8]) 
that all quantities are decomposed into a mean value, 
d*, and a superimposed disturbance a'* and that any 
arbitrary two-dimensional disturbance can be 
expanded in a Fourier series, a single oscillation of 
wave number ~* is assumed to be of the form (tem- 
poral stability) 

d'*(x*,y*, t*) = 6*(y*) exp [i~*(x* - 8*t*)]. (3) 

Here, a* represents the velocity components u* and 
v* (two-dimensional flow) and the pressure p*. When 
variable properties are involved, it also represents 
these properties, i.e. in our case density p*, viscosity 
#*, as well as the temperature T*. All complex quan- 
tities are marked by the symbol . In the complex 
quantity ~*, with 

~* = c*+ ic* (4) 

c* denotes the phase velocity, whereas c* determines 
the degree of amplification or damping. 

From the Navier-Stokes equations and the thermal 
energy equation (both for variable p* and /~*), 
together with the continuity equation, the following 
linearized differential equations for the dimensionless 
amplitude functions a(y), g(y) and O(y) are derived 
by inserting equation (3), subtracting the mean flow 
equations, and eliminating the pressure in the momen- 
tum equations. All quantities are nondimensionalized 
with a reference length L*, a reference velocity U* 
and a reference temperature difference AT* which 
may be specified later. 

_,~ _F~ 3'7 
+pLu+ = o (s) 

+¢" a(a-e)+a'~ +-g~e ;' a"-~2c" 

" ~ = 0 (6) +p(a +.2a')+2p'a"+ff'a" 
J 
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Table 1. Comparison of methods: (a) property expansion method and (b) direct 
solution method 

Advantage Disadvantage 

Method (a) : Results hold for all sets 
series expansion of of property laws and all 
p*(T*), ~* (T*) (small) heat transfer 

rates 

Method (b) : No restrictions with 
specific respect to the heat 
p*(T*),/~*(T*) transfer rate 

Asymptotically correct 
only for small heat 
transfer rates 

Results hold only for 
one specific set of 
property laws and one 
heat transfer rate 

f ^ _ t3) i -,, 
p ~ ( a _ e ) O + O ,  i + ~ _ ~ e P r ( O  _~2~))=0 (7) 

with 

~ R C p  Re OR URLR Pr = (8) 
~* ' k *  

as the Reynolds arm Prandtl number, respectively. As 
usual quadratic te.rms are neglected (linear stability 
theory) and mean flow quantities are assumed to be 
only y-dependent (parallel flow assumption). The 
notation a' here denotes the derivative of quantity a 
with respect to y. 

The associated boundary conditions are 

y = O  a = f = ~ ) - - 0  (9) 

y ~ o o  a = 6 = ~ ) - - - 0 .  (10) 

Equations (5)-(7) are three equations for fi, f and O. 
They can be solved by two methods : 

(a) after an asymptotic expansion of all dependent 
variables based on the Taylor series expansion of 
p*(T*) and p*(T*) (property expansion method). 

(b) directly, i.e. after specific property laws 
p * =  p*(T*) and # * =  #*(T*) are introduced 
(direct solution method). 

Table 1 lists the advantages and disadvantages of 
methods (a) and (b). All theoretical studies involving 
variable properties that we could find in the literature 
use method (b). Typical examples are studies like that 
of Wazzan et al. [5] and that of Lee et al. [11]. For 
reasons that will be further explained in the discussion 
of this study, we definitely prefer method (a). Never- 
theless, method (b) may always serve as a standard of 
comparison for expansion method (a). 

with 

= L aT* p*J. L b-~ 7 .  03) 

and the perturbation parameter 

(T* -- T*)L* 
- (14) T* 

which here is specified for a case with constant wall 
heat flux q*. When only linear terms of the expansions 
(11) and (12) are taken into account, we will call this 
a linear perturbation theory. What follows is a linear 
analysis, but extension to higher orders with respect 
to g is straightforward. 

The Kar-parameters are properties of the fluid. 
Table 2 gives specific numbers for air and water under 
standard conditions. 

Due to the decomposition a = a + ~ exp [is(x-~t)] 
the property expansions read 

p = l+gKpTO+O(t  z) /~ = eKpvO+O(e 2) (15) 

= l+gKu-rO+O(e 2) g = ~K.-rO+O(~2). (16) 

The mean flow field is affected by variable property 
effects through p and/1, whereas the stability equa- 
tions (5)-(7) are affected by the mean as well as by 
the disturbance parts of the properties. 

Equations (11) and (12) suggest an expansion of all 
mean flow and disturbance quantities of the general 
form 

a = ao+g(KFra,p+K~Ta,,)+O(e 2) (17) 
_ ^ 

with the quantity a representing : a, ~, g, 3, p,/~, ®, ®, 

3. PROPERTY EXPANSION METHOD 

The perturbation solution of the stability problem 
is based on the Taylor series expansions of p* and/~*. 
According to equation (1) they read 

p = l+~K:rO+O(e  2) (11) 

# = 1 +eKuTO+O(e 2) (12) 

Table 2. Prandtl number and K,v-values of air and water for 
T* = 293 K,p* = 1 bar 

Air 0.717 - 1.000 0.775 
Water 7.010 0.057 - 7.132 
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& According to equation (17) the complex parameter 
is 

= eO+~(K~Te,v+K~T3,v)+O(/32) (18) 

with an imaginary part (amplification rate) 

Ci : C0i +/3(KpTClpi  q -  K~,Tel~ti) + 0( /32)  • (19) 

The expansion of the parameter ~ in the same way as 
all other functions is a crucial step in the present 
theory. Determination of ~ and 6~ from the first 
order equations below is the final objective of our 
theory. 

Inserting the expansions (15)-(17) into the equa- 
tions for the mean flow as well as in those for the 
perturbations, equations (5)-(7), and collecting terms 
with respect to eK~r and /3KuT, gives the asymptotic 
equations of the stability problem. 

4. APPLICATION OF BOUNDARY LAYERS 

The property expansion method now is applied to 
boundary layer flows. A numerical example will be 
given for the flat plate boundary layer with constant 
wall heat flux q*. For other boundary layers (with 
pressure gradient) only the mean flow quantities must 
be changed. No additional terms appear in the equa- 
tions for the amplitude functions of the perturbation, 
Therefore the flat plate case is an adequate example. 

4.1. Mean flow quantities 
In the boundary layer equations for the mean flow 

the expansions for ~ and 12 according to equations 
(15) and (16) are inserted together with the expansions 
for all dependent quantities, cf. equation (17). 

For the example of the fiat plate the equations are, 
cf. Gersten and Herwig [12], with the self-similar 
stream function f (y ) ,  y = y * / L * ,  L* = [It*x*~ 
(p 'U*)]  '/2, pa = f '  = df/dy and 8 = (T*(x*)-  T*~)/ 
(~w*(X*) - T*) : 

/~ + = 0 (20) 

8"+½Pr ( f S ' - f ' 8 )  = 0 (21) 

with the boundary conditions : 

y = O  f = f ' = 8 - 1 = O  y--+oo f ' - - I  = 8 = 0 .  

(22) 

Inserting 

= I + e K . . 8 + O ( ,  2) p = l + / 3 K ~ . 8 + O & )  

f=fo+e(KpTflp+K,,Tf,~)+O(/32) 8 = 80+O(g) 

into equations (20) and (21) gives 

zero order : 

m 1 tt f0 + ]fof0 = 0 (23) 

8'~ + ~Pr(foS'o --f'oSo) = 0 

1 st order : 

(24) 

f L  + ~2 (,f'(pf0 +f~pf~) 

= (8ofo)'+8'o(f'~ +~fof'o) (25) 

IH 1 1! ,t 
f ,~ +](f,~,fo + f~ fo )  = - (80fa) '  (26) 

with all first order boundary conditions equal to zero. 
From the solution for f the velocity components are 
a0 = f ~ ,  tT,p = f ]p - -0080  and tT,~ =f ]~ .  

4.2• Amplitude functions 
The stability equations (5)-(7), from which the 

amplitude functions t~, g and Ib can be determined, 
are now subject to a perturbation procedure similar 
to that of the mean flow. The above-mentioned ampli- 
tude functions are expanded according to (17). The 
amplitude functions ~ and/i ,  cf. equations (15) and 
(16), are (due to their temperature dependence) 

= 8 K p T ~  o + 0(/3 2) (27) 

/i = eK, TO0 + O(e2). (28) 

Inserting all expansions and collecting terms of equal 
magnitude with respect to/3KpT and/3K~T leads to the 
following set of asymptotic stability equations. For 
convenience stream functions are introduced for the 
zero order equation and the viscosity first order equa- 
tion, defined as 

30 
~ 0 = - ~  O~=t~0 (29) 

t31~ 
(b~,, = - w-  (b~, = t~,,. (30) 

ta 

The equations are 

zero order : 

(a ° _ ~0) ( ~  _ a2 ~0) -- a~,P0 

i 
+ ~e($g"-2c t20~+~4~0)  = 0 (31) 

(a0-80)O0+ aTePr(~)g-e2O0)  = 8;~0. (32) 

1st order (density) : 

t~lo+ +O0(u0 - 0 0 ) + 0 5 - 7  = 0 (33) 

^ , ] - . ,  __ 2 e l p  -] . . . .  Ztp (a0-Co)LU,~.= g j~-u0g 

i I- .... _2==ab_c,,~] 
+ 7RTe [u,~ 

= -(a.~-~,,)[a; +~25]-a'b~-,~j ,~ 
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i F 2 ~ ~ + 

let t~j 

- 0 o ~ ;  ~°- Oo ~ ; + ~  (~o-do) 
i c ~ - -  

+ ( a 0 - a 0 ) [ a ; O 0 - O ; a 0 ] .  

1st order (viscosity): 

(ao - ao) (¢ ' ; .  - ~ ¢,,,) - a~¢,,, 

i 
7 ~ e  ( ..... ~. , ,  , .  

(34) 

0.4 

0.2 

0,0 
0 

q)Or 

/ /  "~! 1/ i t ' /  ~ 1 ~ /  Y ' - I - ! / I  

/ ' O  5 I y 10 

5 y l o  

Fig. 1. Zero order amplitude function ~b0; 0~(0)= 1 
for normalization: Re = 301.7, c0i = 0.0 (ct = 0.3034, C0r = 
0.3965). Inset : Ten subregions of orthonormalization with 
the two functions q~03~ and tPo~i. Increasing the number of 

subregions will increase the computational accuracy. 

_ ~ A i t  2 ~ - t t  = - (u,,, - c~,)(~o0- c~ ~00) + u~,,q~o 

i 
- -  ( ~ l l l l  2 ~ t t  4 a 

+ 2 0 ;  (~ '  -- e2 ~b;) + ~)g(O~ + ez ¢o) 

+ Oo (tT~' + ~t2 tT~) + 20~a~ + 6~t7~] 

with the associated, boundary conditions 

y = 0 :  

(35) 

(PO = (PO := O 0  = a l p  = /'~lp = (Pig = e l l #  = 0 

(36) 

y-->oo : (O0 =(~tO =OO = alp =l~lp = (pl# =~)t l#=O. 

(37) 

Equation (31) is the classical OS equation for constant 
properties which is the zero order equation of the 
asymptotic expansion with respect to e. The solution 
procedure starts with this equation. The first order 
equations for density and viscosity are affected by its 
solution but are, due to the expansions, independent 
of each other. 

5. NUMERICAL SOLUTIONS 

The mathematical nature of the asymptotic stability 
equations is distinctly different for each of the equa- 
tions (31)-(35). 

The classical OS, equation is an eigenvalue problem 
which owing to its stiffness is difficult to solve numeri- 
cally [13]. One way to deal with this stiffness is the so- 
called Gram-Schmidt  orthonormalization : for details 
see Mack [14] and Herwig and SchCifer [7]. One feature 
of this solution procedure is that the amplitude func- 
tions are determined only as piecewise steady func- 
tions in subregions of orthonormalization. Since a 
continuous function ~b0 is needed in the zero order 
energy equation as well as in the first order momentum 
equations, it must be restored in a way described in 

Herwig and Sch~ifer [7]. Figure 1 shows the real and 
imaginary parts of ~0 as well as both parts of one of 
the four fundamental solutions 00,-~o4 from which 
~bo is constructed. The solution parameters prescribed 
in Fig. 1 were Re = 301.7 and Co~ = 0.0, the two 
eigenvalues of the solution were ct=0.1763 and 
C0r = 0.3965. Actually this case corresponds to our 
critical Reynolds number (lowest Reynolds number 
on the neutral curve Coi = 0.0) which agrees very well 
with that of other studies (ref. [8] : Rec = 302 ; ref. 
[15]: Re~ = 303). 

The thermal energy equation (32) for O0(y) is a 
nonhomogeneous linear second order differential 
equation with homogeneous boundary conditions. It 
is also a stiff differential equation like (31), and was 
solved by the so-called multiple shooting method [16]. 
In this method, the whole solution domain is cast into 
subregions. Then a first step integration is performed 
starting from assumed boundary conditions in each 
subregion (taking into account the boundary con- 
ditions at the wall and for y --* oo). In subsequent 
steps, the discontinuities at the boundaries of the sub- 
regions are removed so that a continuous function O0 
results. 

The only solution parameter of the energy equation 
is the Prandtl number. The two eigenvalues of the 
problem enter the energy equation indirectly through 
~b0 which must be known from the OS equation. 

In Fig. 2 the real and imaginary parts of the func- 
tion O~ are shown for Pr = 0.7 with 00 from Fig. 1 
(Re = 301.7, c0i = 0.0). 

The first order equations (33)-(35) are non- 
homogeneous differential equations of the form 

L[alp, ~,p, ~01 = f(a0,/~0, ~)0, ~l) (38) 

L[~, , ,  ~0] = f(00, O0, d~) (39) 

with the OS differential operator L given by one of 
the two equivalent forms 

L[a,f ,  eo] or L[0 ,Q]  

with 
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Fig. 2. 

II I 
\\_/I 

Zero order amplitude 

y ~0 

function O 0 : P r = 0 . 7  
(Re = 301.7, c0i = 0.0). 

L[~b, c0l = (Uo --co)(q 5 " -  ~:~b) --a~q5 

i ~,,,, . ,, . 
+ ~ (~0 - 2 ~  +~",~) (40) 

for example. Specific values of ?~p and ~ must be 
found for which equations (38) and (39) have solu- 
tions. These complex constants are solution 
parameters,  equivalent to the eigenvalues of  the zero 
order (homogeneous) problem. The corresponding 
solutions of  the first order equations will be denoted 
by ~jep, 6~pp and ~]pp, respectively (p for part icular  
solution). Their general solutions are 

u,o = u,op+Cpu0 eip = f ,po+dpe0 (41) 

~,p = q3,pp + dp~bo (42) 

since the zero order solution ti0, ~o (or ~bo) satisfies L[a, 
~, ?o] = 0 (or L[~b, 6o] = 0). Due to the undetermined 
constants C'p and ( ' ,  in equations (41) and (42) inte- 
grat ion can start  from the wall, fixing ti]p(0) and 
gb'(p(0) arbitrarily,  for example. Integration was again 
performed by the multiple shooting method,  using 
~p and ~p as shooting parameters in the respective 
equations. 

The process of  determining the first order par-  
ameters ~p and ~,p is linear, since ~t~, ~,p and ~b~p as 
well as their derivatives are not  multiplied by ~]~ and 
dip, respectively. Therefore, no i teration is needed to 
determine d~p and d~p. This is different from the process 
of  determining ~0, since q~0 is multiplied by ~0 in equa- 
tion (31). In Fig. 3 the real and imaginary parts of  the 
ampli tude functions fi~p, f~, and ~b~p are shown for the 
same parameters  (Pr = 0.7 ; Re = 301.7 ; ci = 0.0) as 
in the previous figures. Fo r  normalizat ion we have set 
~p(0)  = qS';p(0) = (1 + i l ) .  The solution parameters  
for this case are 6~p = - 0 . 1 4 3 - - i 0 . 0 6 2  and ~p = 
0.486 + i0.072. 

6. DETERMINATION OF Rec 

The critical Reynolds number  Rec defined as the 
lowest Reynolds number  on the neutral curve (ci = 0.0 
in an c~-Re diagram) physically describes the onset of  
the transit ion process. Below Rec the flow is stable 
with respect to oscillations of  all wave numbers. The 
effect of  heat transfer on the stability of  laminar  

0.8 
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-0.$ 

0 

- -  U l p r  

--- Ulf~ 

¢% 

i 
f 

\ . /  
y 10 

0.1 

0.0 

-0,1 \,-</ , , 

S y 10 

1.2 

0.6 

0.0 

F ~  

/ \ ~l~r 
- - -  ~ l a  

/ 
/ 

/ 
/ 

5 ¥ 10 

Fig. 3. First order amplitude functions for Pr = 0.7; 
Re = 301.7 ; c0i = 0.0 for (a) ~lp, (b) fl~ and (c) q31u. 

boundary layers therefore can be characterized by the 
way it affects the critical Reynolds number.  The final 
objective of our study is to deduce an asymptot ic  
expression for Reo of the form 

Rec = Re~o[1 +e(KpTApT +KpTA~T) + O(e2)] (43) 

with Reco as the critical Reynolds number  without heat 
transfer (Reco = 301.7 for the flat plate). A part icular  
formula (43) will hold for a specific flow and heat 
transfer type only (for example:  flat plate flow with 
qw = const.) but  due to the expansion procedure it 
will hold for : 

all (small) heat transfer rates by specifying e accord- 
ing to the rate of  heat transfer under considerat ion 
and 

all (Newtonian) fluids by specifying KpT and KpT 
according to the fluid under considerat ion (cf. Table 
2). 

It takes two steps to determine ApT and ApT from the 
asymptotic  stability equations. 

Step (1) : Finding the functional dependence 
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Re¢ = Re~ (eKpx, eR~,v) and especially Re~ (g, gpT , O) 

and Re~(O, eK, T) 

Step (2) : Determirat ion of 

[_~ Reo(O, 0)_7 Re~° 1 

(44) 

a n d A . T  = I- ¢ ~718Rec,O,O,l Reg'. (45) 
L a K,T /,K.T 

Since Rec is Prandtl  number  dependent for ~ :~ 0 the 
coefficients ApT and A,T will also depend on Pr. This 
can be taken into account by a proper variation of the 
Prandtl  number  in the process of determining the two 
coefficients. 

Step (1), which actually is the major one, will be 
performed as follows. 

Since the critical Reynolds number  is reached when 
ci = 0.0 for just  one wave number  ~ (then the line 
Re = const, touches the neutral curve at the level 

= ct~ in the el-Re diagram) the condition for Re~ is 

ci = c0i "[-e,(gpvclpi'~Kt,vclt~i) = 0 for just one ~. (46) 

This can be evalual:ed when c0~, cu~ and Cl~ are known 
functions of ~. 

In Fig. 4 they are shown for the fiat plate at Pr = 0.7 
for three different Reynolds numbers. The curves in 
Fig. 4 are smooth curves through sufficiently dense 
data points. Each data point itself is the result of a 
numerical solution of equations (31) for c0i, (33) and 
(34) for clpi or (35) for el# i. 

Each Reynolds number  case in Fig. 4 will contribute 
one point to the curves Re~(eKpT, 0) and Re~(O, eK,,v) 
by choosing eKpT and eK, v such that Coi + l~gpTclp i = 0 
and c~+eK~vc~,i = 0, respectively, for just  one ~. Fig- 
ure 5 depicts both curves which emerge from a large 
number  of diagrams like Fig. 4. 

In step (2) of the procedure one simply has to find 
the tangents to the two curves in Fig. 5 to determine 
ApT and A~T according to equation (45). 

After repeating lhis procedure for different Prandtl  
numbers we finally get the ApT(Pr) and A~T(Pr) curves. 
In Fig. 6 they are shown for the Prandtl  number  range 
0.1 <<,Pr<~ 10. 
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R e  > R e c  
(Re - 4 6 0 ) f  "--. "-,. O01 

"- - - -  Clpl 
" " . , ,  / . . . .  e l ~  

',, / 

m ~ W  

0.25 @ 0.50 

0.1 

0.0 

-0.1 

R e  = R e e  
(Re - 802) - -  C01 

~'~ '~ ,~ .  - - -  Clpl 
"" • - ' - "  Clld ,,% 

N 

0.25 G 0.50 
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t'" "~'~ I ::---~ Clpl 
./" R e  < R e c  ~ " - - .  

/ (Re - 120) [____ " Clld 

f 
f 

0.2.5 1~ 0.50 

Fig. 4. Eigenvalues c0~ and solution parameters cu~ and ell fi 
for three different Reynolds numbers : Pr = 0.7. 

of the various terms in equation (43). From these 
considerations it follows that boundary  layer sta- 
bilization (Rec > Re~o) occurs for air by cooling and 
for water by heating. The amount  of stabilization is 
given by equation (43). 

7. D I S C U S S I O N  

The final result of  the property expansion method, 
equation (43), clearly reveals how the boundary  layer 
stability is affected by heat transfer across the wall. 

For  the example of flat plate flow (qw = const.) we 
find : 

(1) an opposite behaviour for heating (e > 0) and 
cooling (e < 0) of the fluid and 

(2) two different variable property effects (density 
and viscosity) which enhance each other for fluids 
with opposite signs of Kpr and K~T, like air and water:  
cf. Table 2. In Table 3 this is illustrated by the signs 

460 , ", , , , / , ~ /  

, /  
. . . . .  Rec(~:KpT,O) '~, / /  

3O2 ........ R e e ( O , E ~ ~ .  

120< " ' " ' " -  
-0.4 0.0 EKpT 

EK~.T 

Fig. 5. Critical Reynolds number for non-isothermal bound- 
ary layer flows (qw = const.) : Pr = 0.7. O, determined from 

Fig. 4; , step (1) a n d - - ,  step (2). 



1862 P. SCH,~FER et aL 

Table 3. Signs of various terms in equation (43) for air and water : flat plate flow (q, = const.) 

e(KpTApT + KuTA~T) 
~ > 0  ~ < 0  

KpT guT KpTApT K # T A , T  Heating Cooling 

Air - + - - - + 
Water + - + + + - 

/ 

- -  ApT 
- - -  AI~ T 

. 5  . . . . . . .  i r i [ i i I . . . .  1 , , , , i  i i i i i i i 

o,1 1 Pr 1 

Fig. 6. Critical Reynolds number coefficients for a flat plate 
boundary layer with qw = const. 

The results of  the property expansion method can be 
compared to those of  the direct solution method [no 
asymptotic expansions, direct solution of  equations 
(5)-(7)] when specific property laws p*(T*)  and 
#*(T*) are assumed. As an example we have chosen 

(47) 

which is a good approximation for air. In terms of  the 
property expansion method this case corresponds to 
KpT = --1.0 and K,T = 0.775. Figure 7 shows that 
both methods asymptotically merge for T* ~ T*  (i.e. 
e ~ 0). Deviations for increasing temperature differ- 
ences are due to neglecting O(e2)-terms in the property 
expansion method. They are nonzero even though the 
property laws are linear [that means K,T-Values for all 
O(e2)-terms in equations (11) and (12) are zero, but 

400 .,.??,~ . . . . .  

R e ~ . ,  -~--~-11~a 

180 ~ 
-2o o ( 1 . _ C ) / . c  ~o 

Fig. 7. Companson of the two methods : (1) property expan- 
sion method and (2) direct solution method. (la) Rec(eKpT, 
eKuT)-curve according to equation (44) of the property 

expansion method. 

1.00 . , , 

.°°o . "...!.+ : 

- - - - - -  C " ' " ' - . .  g 

0.70 
I 

0.00 0.03 E 0,06 
Fig. 8. Comparison with experimental data, Harrison et al. 
[17]: O, experimental data; (c), curve fit to the data; (1) 
property expansion method and (2) direct solution method. 

still terms like (Kpve) 2 appear in the property expan- 
sion method]. Curve la  in Fig. 7 is that o f  the inter- 
mediate result for Rec [step (1)] in the previous chap- 
ter. Though one might argue that it contains more 
information than the mere tangents [step (2)], Fig. 7 
shows that it is not  always closer to the exact solution 
than the direct solution method. 

Finally, we want to compare our results with exper- 
imental data. Harrison et al. [17] have measured the 
influence of  wall heating (q,  = const.) on the stability 
of  fiat plate boundary layer flow. In Fig. 8 their exper- 
imental data together with a proposed curve fit to 
these data are shown. The results of  the property 
expansion method compare well with these results. 
Those of  the direct solution method are only slightly 
better. These direct solution results had to be com- 
puted by solving equations (5)-(7) for this special 
case, whereas the property expansion results emerged 
from a simple application of  equation (43) together 
with Fig. 6 to this special case. 

This may emphasize the strength of  the property 
expansion method. There is no need to specify a par- 
ticular fluid nor a specific heat transfer rate, since the 
final results in their general form hold for all (New- 
tonian) fluids and all (small) heat transfer rates. 
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